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Abstract. A layer of ferrofluid under a static vertical magnetic field is submitted to a random vertical

vibration which acts as a multiplicative noise on the Rosensweig instability. At low noise amplitude the

Rosensweig instability onset is delayed and our experimental results are in good agreement with the

theoretical prediction of Lücke et al. [1]. For larger noise, a new regime is found where peaks appear and

vanish randomly in time. Statistical properties of the temporal evolution of the fluid surface are presented.

PACS. 47.54.+r Pattern selection; pattern formation – 05.45.-a Nonlinear dynamics and nonlinear

dynamical systems – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

Hydrodynamic instabilities can be perturbed by a multi-
plicative noise in many experimental situations. On the
one hand, the control of the forcing parameter can never
be perfect and the forcing then fluctuates around the pre-
scribed value. One may think about the temperature regu-
lation of a Rayleigh-Bénard experiment or about the speed
control in a Taylor-Couette flow. On the other hand, the
bifurcation can occur forced by a fluctuating field. An ex-
ample of that situation is the dynamo instability where
a magnetic field is generated by the velocity field of an
electrically conducting liquid. For all known liquid met-
als, the kinematic viscosity is very small with respect to
the magnetic viscosity, thus the velocity is turbulent at
dynamo onset. In that case, even with a perfect forcing of
the velocity field, the forcing of the magnetic field fluctu-
ates [2].

In order to understand the possible effects of these
fluctuations, many studies have been done where the fluc-
tuations are externally prescribed. Two kinds of variations
can be identified. In a previous paper, we studied the effect
of a parametric modulation of the control parameter of the
Rosensweig instability [3]. We showed that the Rosensweig
instability is delayed by this modulation. In this paper, we
focus on the case where the modulation of the forcing pa-
rameter is stochastic. Lücke et al. [1] have studied a scalar
equation which drives to a supercritical bifurcation in ab-
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sence of noise. A multiplicative noise delayed the onset of
instability. This result has been checked numerically [4].
With an electronic experiment, the same result has been
observed for a Hopf bifurcation [5]. For a bifurcating field
of higher dimension, modifications of the onset of the in-
stability have been measured in experiments with liquid
crystals [6]. For larger noise amplitude, other effects can
arise. It has been shown that noise can induce transition
that would not occur in the deterministic limit [7]. For
a subcritical instability, noise can create new regimes of
bistability [8]: in a spatially extended system, the solution
switches between two states which are different from the
deterministic states. On-off intermittency has been seen
in liquid crystal experiments: near a specific point the dis-
tribution of the duration of laminar phases is governed by
a power law with exponent −3/2 [9] .

In this paper, we study the effect of multiplicative
noise acting on a static pattern–forming instability: the
Rosensweig instability. It appears when a ferrofluid is sub-
mitted to a vertical magnetic field and creates static peaks
at the fluid surface. The forcing parameter fluctuates be-
cause the fluid is vertically vibrated with a random accel-
eration. For low noise amplitude, the onset of instability is
delayed. This is the stabilization of an instability by noise.
The onset displacement is correctly predicted by a study
of the Mathieu equation including a noise term which de-
scribes the evolution of a surface perturbation. At higher
noise amplitude, a new effect arises: the surface switches
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Fig. 1. Sketch of the experimental setup: a circular cell filled

with 45 ml of ferrofluid is in the center of a Helmholtz coil

(HC) and is vibrated with an electromechanical exciter (EME)

driven by a random noise generator (NG). This noise can be

filtered (PBF). The peak detection is performed by a laser

beam enlarged (with the lenses L1 and L2) and focused by the

lens L3 on a photodetector sensor (PD) after reflection on the

flat ferrofluid surface. L3 does not focus anymore the beam

on the photodetector when Rosensweig peaks appear on the

surface.

in time between being flat or deformed by the Rosensweig
instability.

Our experimental device is drawn in Figure 1. It is al-
most the one used in [3]. A circular cell, 8.5 cm in inner
diameter, containing a ferrofluid layer (APG 521A Fer-
rotec) 8 mm in depth, is submitted to a magnetic field
generated by a Helmhotz coil. We performed the mea-
surement of the ferrofluid density ρ = 1230 kg/m3 and
of its surface tension γ = 35 × 10−3 N/m known by the
measurement of the dispersion relation for the Faraday
surface waves. The magnetic properties, given by the man-
ufacturer, are χi = 1.4 for the initial magnetic suscepti-
bility and Msat = 300 G for the saturation moment. A
DC current is supplied to the coil by a stabilized power
supply (HP6654A). The cell is put on an electromechan-
ical vibration exciter (BK 4809). This vibrator is driven
by a random noise supplied by a digital signal generator
(HP8904A). Beforehand, this almost Gaussian white noise
is filtered with a pass–band filter (SR650) and amplified
(BK 2706 power amplifier). The spectrum of the measured
acceleration is therefore almost flat between the cutoff fre-
quencies. The temperature is stabilized around 20± 1 ◦C
with a thermal bath (Lauda RC6) and a water circula-
tion. The value of the magnetic field, the rms intensity
of the noise and its spectral width are our three control
parameters. We measure the cell acceleration with an ac-
celerometer (BK 4393V). The ferrofluid surface state is
determined thanks to a He-Ne laser beam. This beam, en-
larged over 4 cm2, is reflected on the flat ferrofluid surface
and then is focused on a photodetector sensor (PDA55
ThorLabs). When the ferrofluid surface is deformed, the
beam is not focused anymore on the photodetector and
the amplitude of the signal almost vanishes.
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Fig. 2. Evolution of the time τ spent in the flat surface state

divided by the total measurement time, as a function of the

noise control parameter S. (◦) correspond to B = 159.2 G

where the transition is sharp between 0 and 1. (�) and (∗)
correspond to B = 166 G and B = 171 G respectively. The

dashed lines show Si and Su (defined in the text) for B =

171 G. The spectrum of the noise is in a range [10–100] Hz.

In the absence of vibration, the surface undergoes an
instability for a critical value Bc of the magnetic field.
This is the Rosensweig instability that creates an hexago-
nal pattern of static waves with wavenumber kc [12]. The
magnetic induction threshold is Bc = 158 ± 1 G in agree-
ment with the theoretical value (see below) [10]. When
the vibration is added, following [1], we characterize the
amplitude of the random acceleration, by the parameter S
defined by

S =
1

2 π

∫ ∞

0

D(f)
f2
0 + f2

df (1)

where f0 is a viscous cut-off frequency that we will define
later and D(f) is the power spectrum of the acceleration.
Notice that in absence of applied magnetic field, the flat
surface is stable whatever the amplitude of the noisy vi-
bration reached in our experiments.

For a magnetic field slightly above Bc, the instability is
inhibited when increasing S. In order to study this transi-
tion, we measure τ , the average time spent by the surface
being plane divided by the total measurement time. We
assume that the surface is flat as soon as the photodetec-
tor output signal is greater than If = 0.1 V , knowing that
when the focusing of the beam is adjusted without vibra-
tion the photodetector sensor is almost saturated at 5 V
(the precise value taken for If does not modify the results
presented hereafter). At a precise value Se, τ changes dras-
tically from 0 to 1 with the control parameter S as shown
by the open circle in Figure 2. This means that below Se

the surface is always deformed by the Rosensweig insta-
bility and is always plane above Se as it can be checked
by visual inspection. Thus, a stochastic vibration of the
vessel inhibits the Rosensweig instability. Even if this in-
stability is known to be subcritical, our measurements are
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not precise enough to study the corresponding hystere-
sis cycle i.e the same results are obtained if we increase
or decrease one of the control parameter (B or Se). The
instability wavenumber k stays roughly constant on the
(B, Se) marginal curve. The growth that one may expect
due to the increase of B is too small with respect to the
quantization imposed by the lateral boundaries.

This surface behaviour for B close to Bc can be un-
derstood with a simple model. For a ferrofluid of viscos-
ity ν, surface tension γ and magnetic susceptibility χ, an
eigenmode of wavenumber k of the surface deformation ak

obeys to the equation

äk + dkȧk + (ω2
0(B, k) + ζ(t)k) ak = 0 , (2)

where the dissipation dk is 4 ν k2 in the deep layer ap-
proximation [11]. The dispersion relation ω0(B, k) is given
by [12]

ω2
0(B, k) = g k − χ2

ρ µ0 (2 + χ) (1 + χ)
B2 k2 +

γ

ρ
k3 . (3)

The term ζ(t)k in (2) comes from the effective gravity
g + ζ(t) where the acceleration of the vessel is ζ(t). It is
assumed to be a colored noise characterized by its power
spectrum D(f).

In the absence of noise, the surface undergoes an in-
stability at B = Bc and k = kc for which the pulsation
vanishes. This is the Rosensweig instability. For fixed k
the behaviour of ak has been studied by Lücke et al. [1].
A simple adaptation of their result shows that the solution
ak = 0 is stabilized by noise if

S =
1

2 π

∫ ∞

0

D(f)
f2
0 + f2

df ≥ −π
ω2

0(B, k)
k2

· (4)

with f0 = 2νk2/π. If B ≥ Bc, many modes k are unstable.
We suppose that the surface is plane if all the modes are
stabilized, thus if

S ≥ St = −π
ω2

0(B, kmin)
k2

min

, (5)

where kmin corresponds to the minimum of ω2
0(B, k)/k2.

In the range where the experiment is done, kmin remains
close to 600 m−1 and this value is used for calculation
of f0. As said before, for B slightly larger than Bc, in-
creasing the noise amplitude stabilizes the flat surface for
a particular value of S called Se, determined with our
optical measurement. Figure 3 compares the experimen-
tal measurement Se to the theoretical value St given by
equation (5) and plotted in full line. The agreement is very
good for B−Bc smaller than 4 G. This is true whatever the
width of the noise spectrum. Note that the experimental
error bars are essentially due to temperature fluctuations.
Thus, close to the deterministic onset, the most unstable
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Fig. 3. Stability diagram in the (S–B) plane. The spectral
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St predicted by equation (5).
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Fig. 4. Temporal trace of the light intensity measured with

the photodetector (B = 163 G). The dashed line corresponds

to I = 0.1V and is chosen as threshold to define the surface

state.

mode controls the state of the surface and S is the perti-
nent parameter for describing the noise amplitude.

An unpredicted dynamical regime appears by increas-
ing the noise level at higher magnetic field. Indeed, for
magnetic fields stronger than Bc + 4 G, the surface does
not undergo a sharp transition from deformed to plane
when increasing the noise amplitude. The process is more
complex. There is a domain of noise intensity where the
Rosensweig peaks appear and disappear randomly in time
but they display the same spatial coherence. Figure 4
shows the temporal trace of the light intensity I(t) mea-
sured with the photodetector in that case. When I(t) is
closed to zero (for instance I(t) ≤ If = 0.1 V, the dashed
line on the figure), there are peaks on the surface because
the beam is not focused on the sensor, whereas bursts
correspond to the flat state of the surface. Characteris-
tic times of I(t) are much larger than the ones of the
random acceleration (here the spectrum is almost flat be-
tween 10 and 100 Hz). For a given field, the mean duration
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Fig. 5. Probability density function of τ , the time spent by

the surface being flat in the intermittent regime (B = 166 G)

for noise parameters: S = 5.56× 10−3 (m/s)2 (◦), S = 6.61×
10−3 (m/s)2 (∗), S = 6.88 × 10−3 (m/s)2 (·). The spectral

width of the noise is 10–100 Hz. τ is rescaled by (S − Su) in

the inset. PDF are obtained with 20 000 values of τ .

of the burst increases (respectively decreases) by increas-
ing (resp. decreasing) the noise amplitude and at Su (resp.
Si) the surface is always flat (resp. the surface is always
deformed by the Rosensweig peaks). We call intermittency
this regime where the surface switches randomly between
two states.

In order to determine experimentally the boundaries
Su(B) and Si(B), we measure the parameter τ defined
above. The evolution of τ with S for different magnetic
fields is shown in Figure 2. The open squares and stars
illustrate the fact that being zero for small S, τ grows more
and more smoothly up to 1 by increasing S. We assume
that the Rosensweig regime is reached when τi ≤ 0.1 and
the surface is flat for τu ≥ 0.9. Other values of τu and τi

do not change qualitatively our results.
We can therefore determine the boundaries between

the three different regimes as it is shown in Figure 3 with
a noise spectrum in a range [10–100] Hz. Notice that the
curve is slightly shifted to the bottom when the smaller
frequency of the pass–band filter is increased but this ef-
fect is of the same order as the experimental uncertainty.

We plot in Figure 5 the PDF of the time τ that the
surface spends being flat, for different values of S. These
distributions have clear exponential tails (∝ exp(−bτ)).
Within our range of accuracy, b is proportional to
(S−Su)−1, as it can be seen in the inset where are shown
the PDF of (S−Su)τ . The same collapse of the PDF exists

with other magnetic fields or frequency ranges of the noise.
However for a given value of S, a weak dependence of b on
the specific frequency spectrum cannot be excluded here.

We have studied the effect of a multiplicative noise on
a pattern forming instability that creates static peaks on
the plane surface of a ferrofluid. Slightly above the deter-
ministic onset, noise stabilizes the flat surface. This effect
is correctly predicted with a simple model that takes into
account only one mode of the surface. For a larger depar-
ture from the deterministic onset, large noise amplitude
keeps inhibiting the Rosensweig instability but a new ef-
fect occurs: instead of a sharp transition from the flat to
the spiky interface, there is a regime in which the sur-
face switches randomly between being flat or deformed by
the peaks. In that sense we have observed intermittency
at the edge of a stochastically inhibited pattern–forming
instability.

This work has greatly benefited from many discussions with S.

Fauve and A. Petrosyan.
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